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The magnetohydrodynamic flow past a flat plate 

By H. P. GREENSPAN AND G. F. CARRIER 
Pierce Hell, Herverd University 

(Received 6 October 1958) 

The uniform steady flow of an incompressible, viscous, electrically conducting 
fluid is distorted by the presence of a symmetrically oriented semi-infinite flat 
plate. The ambient magnetic field is coincident with the ambient velocity field. 
The description of the resulting fields depends on the physical co-ordinates 
measured in units of Reynolds number and on the two parameters E = apv and 
/3 = pH2/@v2. This description of the fields is approximated in three different ways 
and essentially covers the full range of E and p. In  particular, when p >, 1, no 
steady flow which is uniform at large distances from the plate exists. 

1. Introduction 
In  this paper, we consider the flow of a viscous incompressible electrically 

conducting fluid of constant properties past a semi-infinite rigid plate. The 
applied magnetic field is uniform and is directed in the free-stream direction which 
is parallel to the plane of the plate. This problem is of interest primarily because 
the magnetic and velocity fields can be described explicitly and accurately as 
functions of the parameters and some insight into the nature of magnetohydro- 
dynamic flows can be achieved. The flow past a small finite flat plate under the 
same conditions is also discussed. 

Several techniques are used to treat the problems. One successful technique is 
a direct extension of the asymptotic method which leads to the classical Blasius 
result; another is the modified Oseen technique (Lewis & Carrier 1949). Of 
particular interest is the fact that a formal perturbation series in E ,  the ratio of 
kinematic to magnetic diffusivities, cannot succeed in the two-dimensional 
problem. Such a formal expansion fails to exist, just as the expansion of the 
stream function as a perturbation series in the Reynolds number for the corre- 
sponding two-dimensional fluid problem fails to exist. 

2. The basic equations 
The laws governing the conservation of mass and momentum and those 

governing the electrodynamics of a steadily moving incompressible viscous 
electrically conducting fluid of constant properties are 

v*.q* = 0, (2.1) 
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j *  = v*[E* +p(q* x H*)], 
V* x H* = j*, 

(2.3) 
(2.4) 

V*.H* = V* x E* = V*.E* = 0, (2.5) 

where the symbols are defined as follows: H*, magnetic field intensity; E*, 
electric field; j *, current density; v*, electrical conductivity; p*, magnetic per- 
meability; q*, fluid velocity; P*, pressure; p*, density; u*, kinematic viscosity. 
The two-dimensional geometry we shall consider here is such that the magnetic 
field H* and the fluid velocity q* are each perpendicular to the z-direction. The 
plate lies in the y = 0 plane with its front edge at x = 0. The induced current j* is 
then in the z-direction. The electric field can be taken to be zero, E* = 0, since this 
choice is rigorously consistent with the foregoing equations and geometry. It is an 
interesting choice in that it corresponds to the axially directed flow past a semi- 
infinite pipe of radius R in that limiting case for which R -+ co. In  other words, the 
'points' (x, y, co) and (x, y, -a) are short circuited. We introduce the dimension- 
less variables 

If, in addition, we use equation (2.4) to eliminate j from (2.2), there results 

v . q  = 0, (2.6) 

(2.7) 

VxH=EqXH, (2.8) 

V.H = 0, (2.9) 

(4 .V)  q = - V ( p  +P/2H.H)  + V2q + B(H .V) H, 

where E = u*u*p* and p = p*(H~)2/p*(v~)2. In  terms of a magnetic potential 
A,, such that H = V x [Ao(z, y)i3] and a stream function @o such that 
q = V x [@o(z, y) i,], equations (2.6) to (2.9) can be reduced to 

A W ,  - $ O , W O Z  + lcrozA$oy + PIAOIAAOz -AozA-Aoyl = 0, (2.10) 

~ ~ o - ~ ( @ o y ~ O Z - @ o ~ A O y )  = 0, (2.11) 

where A denotes the Laplacian operator and the suaces x and y denote 
differentiation. 

The proper asymptotic treatment of the classical problem in which f i  = 0 and 
in which equation (2.8) does not appear reveals that the stream function 
for that problem, 11.1, can be written in terms of the parabolic co-ordinates 
6 = &+ir = (z+iy)+ as 

@I S . F o ( l r ) + ~ ~ ~ F , , ( r ) ) + ~ ( ~ ~ l ( r ) ) + . . . .  

Assuming that the asymptotic solution of the present problem is of the same 
form (as it must be), we write 

$0 5f(r)+..., (2.12) 9 

A ,  5dr)+ . . a .  (2*13' i 
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The substitution of these equations into equations (2.10) and (2.11) (properly 
written in parabolic co-ordinates) leads to 

f”+f f” -Pgg”  = O(t-l), 
g “ + E ( f g ’ - g g f l )  = O(E-l). 

(2.14) 

(2.15) 

The foregoing equations, in whichever form we adopt them, are highly non-linear, 
and explicit solutions cannot be anticipated. However, their form strikingly 
resembles the equations which arise when one describes the diffusion and convec- 
tion of vorticity and heat in a moving viscous fluid. In  that problem, @, would 
be the vorticity and A ,  the temperature. The only term which differs in the two 
problems is the final parenthesis of equation (2.10) or the last term on the left- 
hand side of equation (2.14). For such heat and vorticity transport problems 
a modification of the Oseen linearization has been shown to be surprisingly 
successful in a very large variety of problems. The details of this linearization will 
depend on the applied magnetic field and can best be introduced when the 
particular boundary value problems are discussed. 

3. The uniform magnetic field problem 
We shall consider first the flow field which ensues when the applied magnetic 

field is a uniform field, El:, in the x-direction; the plate occupies the half plane 
y = 0, x > 0 and we seek solutions of equations (2.6) through (2.9) with 
q=i, .H=Oontheplate,H-+i , ,q+i ,asx-+ -a. Intermsof @,andA,the 
boundary conditions are @oy -+ 1, @oz -+ 0, AOy -+ 1, Aoz -+ 0 as x -+ - a with 
yio(x, 0) = AOy(x, 0) = 0 and +oy(x, 0) = 0 for x 2 0. 

Let q = i ,+v and H = i,+ h and replace the non-linear terms ( q . V )  q, 
(H.  V) H and q x H in equations (2.6) and (2.7) by av/ax, ahlax and i, x h - i, x v, 
respectively. This linearization represents an extension of Oseen’s treatment of 
viscous flows to the magnetohydrodynamic flow. Physically, the convective 
velocity and the ‘ convective ’ magnetic field contributions are replaced by their 
free-stream values (that is, by the velocity and magnetic fields which would be 
present if the obstacle were absent). I n  fact, the most effective replacement of 
these terms requires that we use appropriate averages of the z component of 
velocity and the x component of the magnetic field instead of the free-stream 
values. We shall not discuss here what these averages are but they can be found 
readily by the same method that was used in treating conventional boundary 
layer problems (Carrier 1959). Note that if these averages were used, the mathe- 
matical problem to be solved would be identical with that treated here. Only the 
definition of x, y, P, E would be changed and these by constant factors of order 
unity. The linearized forms of equations (2.10) and (2.11) are 

where A = - y + A o  and @ = - y + @ ,  (v = V x @is, h = V x As). The boundary 
conditionsare A,  = yi, = 0 for y = 0, @u = - 1 for y = 0, x > 0, and A,, A,, yk,, 
all approach zero far from the plate. It is convenient to write the boundary condi- 
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tion on $u as the limit as a+ 0 of $ J X , O )  = -e-8x for z > 0. The functions 
$, eu, are continuous across the plate; $uu, however, will be discontinuous. 
Definef(x) to be the discontinuity of +uu across the plate, 

f(z) = C$yy),=~+- (@yy)y=o- = [$~,I,=cI~ (3.3) 

and note thatf(x) = 0 for x < 0. The solution of this boundary value problem is 
obtained by Fourier transform techniques. Define the double Fourier transforms 

A ( p , r )  = / / -~A(r ,y)exP(- iBx+~yI)dxay,  (3.4) 

and $(P?r) = /j-:$(z.Y)exP (-ZCPX+ryl)dxdy. (3.5) 

become J-, 

- 

In  particular the y transform is defined as an integral form -m to 0-  plus an 

integral from 0 + to +a. Iff(p) = f(z) e-ipzdx, then equations (3.1) and (3.2) 

( p 2  + r2)  [(p2 + r2 + ip) 3 - ippX] = i~f, 
( p 2  -t rz + ip) B = kp?, 

(3.6) 

(3.7) 

(3.8) 

so that 
- 
9(p74 = k m  p2 + r2 + kp 

p 2  + r2 
Up2 + r2+ ip)  (p2  + r2 + iep) + ebp21-1~ 

Define the function 
1 ;is(,, Y) = - Jm a p 7  T )  eim 0% = J:a +(x7 y) e-ipxdx. (3.10) 2n --m 

Upon substituting for $ from equation (3.10) and performing the contour inte- 
gration, we find that for P < 1 

where h = [( 1 - E ) ~  + 4ep14. 

we consider it to be the limit as k -+ 0 of 
Anticipating difficulties with the inverse Fourier transform of this function, 

Y -  exp-]yJ(pz+k2)+ 
- 4(P7 Y) = I91 qp - ik) 

The roots are selected so that the exponentials decay as lyl -+ m. In this way, the 
Fourier transform $(p ,  y) is an analytic function within some strip in thep-plane 
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containing the real axis, and, therefore, the inverse Fourier transform exists. In  
particular, we shall perform the limiting process (setting k = 0 )  whenever it is 
convenient and proper to so do. 

In  order to determine $(x, y) andf(x), $Jp,  0) must be calculated. It follows 
from (3.12), after some algebraic manipulation, that 

h-l+-E + A + l - - s  
“ P + i w t +  (P+i(+) l + - E - A  4 ( p + i k ) t + ( p + i ( T ) )  1+€+h  4 ] * 

Let 
where 

and ul(x) = 0 (x > 0). For x 

(3.13) 
(3.14) @&, 0) = uo(4 + u1(4, 

uo(x) = - e - a X  (x > 01, 
uo(x) = 0 (x O ) ,  
< 0, ul(x) is to be determined as part of the solution 

of the problem. The Fourier transforms of these functions are 
00 0 

Eo(p) = - 1 e d X  eciPXdx = i / ( p  - is) and Gl(p)  = 1 ul(x) e-ipxdx. 
J o  J -ca 

Note that Uo(p) is an analytic function of the complex variable p in a lower half 
plane which includes the real axis; similarly, ‘iil(p) is an analytic function in an 
upper half plane which also includes the real axis. From equation (3.10) it 

(3.15) 

where &(p, 0) is analytic within some strip containing the real axis. Combining 
(3.15) with (3.13), we obtain the relationship 

where 
.f(’) G(p), 

i 
+‘iil(p) = - 

p= 44p - ik)) 
(3.16) 

h-l+-E h+l--E 
G ( P )  = 

(3.17) 

and from this we can find U(p) and f ( p )  by the Wiener-Hopf method. Since 
f ( x )  = 0 for z < O,f(p) is analytic in a lower half plane containing the real axis; it 
is evident that G(p) is analytic in an upper half plane. Moreover, G(p) has no 
zero’s in the Riemann sheet under consideration. Note that the kernel function 
was ‘split’ in the manipulation that led to (3.13). If we label the functions which 
appear in (3.16) with a @ or 0 according to whether they are analytic in the upper 
or lower half plane, we find that 

or 

6 Fluid Mech. 6 
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The first function can be written as the sum of a 0 function and a 0 function, 

i 1 --- y+- . (3.19) 
i 1 

(P  -is), G(P) ,  G(i&)(p-i8)e 

Equation (3.18) can then be rewritten as 

Since the left-hand side is an analytic function in some lower half plane while the 
right-hand side is analytic in some overlapping upper half plane, the functions 

1 1 1 1 1 1 1 1 1 1  
0 0.1 0 2  0.3 0.4 0.5 0.6 0.7 0 8  0 9  

i___t 

0 B 
FIGURE 1. The ratio, B, of magnetohydrodynamic skin friction to 

‘Oseen’ skin friction versus p for E = 0, 1, 1, co. 

are the analytic continuations of each other and are partial representations of one 
function, &(p) ,  which is analytic and bounded in the entire plane. This function 
must be a constant; the constant is readily seen to be zero. Therefore 

i 1  - m - 
4h(p- ik) )  G(o)p-i&’ 

and upon performing the inverse transform we find that 

(3.21) 

f ( x )  = ~ B ( ~ T x ) - + ,  (3.22) 
l+E+h -+ -1 where B = 2h [ ( A -  1 +c) ( l+; -h) -++(A+l-€) (  ) ] (3.23) 

F 

and h 41 - ~ ) 2 +  4 e 3 .  Except for the factor B, plotted in figure 1, this is the 
classical result. Note that as +- 1, B -+ 0 and f ( x )  --f 0, which in fact states that 
the velocity gradient at the plate (hence the skin friction) approaches zero as the 
applied magnetic field intensity is increased. Fore = a, B = (1  - p)*. The critical 
point p = 1 occurs when the magnetic energy contained per unit volume is equal 
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to kinetic energy density, i.e. when P*H,*~ = p*v$'. We shall see that not only is 
f(x) = 0 at /3 = 1, but the total magnetic field H as well as the fluid velocity q are 
both identically zero throughout the entire flow. The induced field stops or 'plugs ' 
the flow. 

Having determinedf(p), it follows that 

-exp-y [ ( p - i k )  ( p+i  (' - ('-:; 'Iz) (exp -y(p2+ k2)t 

(3.24) 

where, because of the symmetry, we need only discuss the solutions for y > 0. The 
stream function @(x, y) can be determined by an inverse Fourier transform and 
the fact that 

where k and 6 are both set equal to zero, and 5 and q are parabolic co-ordinates, 
defined by (5 + iq)' = 5 + iy. (3.26) 

The total stream function @, = @ + y is then found to be 

1 - exp ( - a2q2) 
an* 

A + E - l  
@ o = t . m ) =  (A+c-- l )u+(A+l-€)a  

1 - exp ( - w2q2) 
wn* 

A + l - - s  
+ 25 ( A T -  1) 0 + (A+ 1 -€) a 

where a = ( - - ) ,  l + € - A  * w = (  l + € + A  2 ) .  * (3.28) 

For any value of e,  and for p c 1, the flow is uniform at large distances from the 
plate. As B -+ 0 and for ,8 < 1 equation (3.27) reduces to the classical result 
obtained by Lewis & Carrier (1949). However, for any non-zero E ,  $, -+ 0 at any 
given field position 6, q as p -+ 1 ; that is, as the applied magnetic field strength is 
increased to its critical value. At p = 1, the entire flow is brought to rest. 

The magnetic potential A can also be computed by inversion of the transform 
function 2 so that 

- exp wn)  - w2q2)1 A = -  (.[ -y+25(7erfuv) - 
2€ 

( A  + € -  1) w +  (A+ 1 -€) n 

The total magnetic potential is A ,  = y + A .  Again as /3 increases to one, A,  -+ 0 
for any non-zero E ;  i.e. the applied magnetic field is completely annulled. For any 

6-2 



84 H .  P. Greenspan and G. F.  Carrier 

non-zero E and for ,8 < 1, A,  + y at large distances from the plate. In  the limit as 
E -+ 00 (i.e. the conductivity of the fluid becomes infinite) 

$o = A,  = 2[[7,1 erf 7,1( 1 -p)+ - (1 - exp - (1 -p) 7,121 ( ~ ( 1  -p))-i]], 
so that the magnetic field is directed along the stream lines and is said to be locked 
in. 

The current density is found to be 

2ew a (T)-* ‘ [exp ( - w2y2) - exp ( - Q2y2)]; (3.30) 
j 3  = (h+€- l )w+(h+l-€)a[2+y2 

the total current in either the upper half plane or the lower half plane is infinite 
but these currents are oppositely directed. Again as ,8 + 1, the current density 
becomes zero; in the limit of infinite conductivity 

If a uniform magnetic field is applied to the flow past a semi-infinite flat plate, 
the boundary layer continues to thicken with increase in ,l? until at the critical 
value ,8 = 1, the entire flow is plugged. The induced current produces a counter 
magnetic field which ultimately annuls the entire applied fluid flow and magnetic 
field. In  view of these results it is apparent that no matter how small the con- 
ductivity of the fluid, e, any perturbation expansion in e must fail. As long as e is 

non-zero, the field strength H t  = 

At first glance, one might have expected that the viscous layer would become 
thinner when the magnetic field intensity was increased. The superficial argu- 
ment which leads to that conclusion notes that the stream lines are tilted upward 
because of the presence of the plate and that they ‘pull’ the magnetic field lines 
along with them so that a similar but lesser distortion of the field-line pattern 
occurs. Since the stream lines are tilted more than the field lines, the force density 
(v x H) x H is directed toward the plate, tending to force any given fluid particle 
to stay closer to the plate. This argument is incomplete because it fails to account 
for the induced pressure field which, as it happens, opposes and dominates the 
above effect. A correct argument which successfully rationalizes the mathe- 
matical result requires a discussion of the balance among the diffusion, convection 
and production (by the electromagnetically applied torque density) of vorticity. 
One notes, here, that the conservation of angular momentum is governed by 

A(V x v) - (v.grad) V x v+P(H .grad) V x H = 0. 

This equation is just the curl of the momentum equation and V x v = o is the 
dimensionless vorticity. Since the distortion of the H field is similar to that ofthe 
v field, the quantity (H . grad)V x H is qualitatively like, and of the same sign as, 
the quantity (v. grad) V x v. Consequently, the vorticity production term negates 
part of the convective contribution and the resulting phenomenon is equivalent to 
a diffusive-convective problem whose effective convective speed decreases as the 
magnetic field increases. I n  such problems this decrease in convective speed 
implies a thicker diffusion layer and our rationalization is complete. 

vg ( p  = 1) will cause plugging. (J 
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4. The asymptotic analysis 
The most surprising result of the linearized analysis is the fact that both q(z, y) 

and H(x, y) tend to zero for each x, y as p -+ 1 for any E .  Clearly, this result 
warrants further investigation, and we turn our attention to an examination of 
the asymptotic or Blasius theory, as formulated in 3 2, i.e. 

f “ + f f ’ r - p g g ”  = 0, 

9‘‘ f E(  fg’ - gf’) = 0, 

(2.14) 

(2.15) 

with the boundary conditions f(o) = f ’(0) = g(o) = 0 and f’(co) = g’(co) = 2. 
A particularly simple case is that of infinite conductivity, E = co, for which the 
foregoing equations reduce to 

f”+(1-/3)f l”  = 0, (4.1) 

g(11)r = f ( 1 1 ) ;  (4.2) 

the boundary conditions remain the same as those associated with equations 
(2.14) and (2.15). The solution of this differential equation is related to the Blasius 
solution P(7) (the solution of (4.1) and boundary conditions for p = 0)  by 

f ( 7 )  = (1  -A-*FW -PP71. (4.3) 

In  particular, f ”(0) = (1  - /3)* P”(o) = 1.328( 1 -/?)*. The skin friction, in this case, 
does approach zero as --f 1, in exactly the same manner as the linearized theory 
predicts. The discrepancy between the two is just the magnitude by which the 
skin friction computed by Oseen differs from that of Blasius. The modified 
Oseen procedure resolves this difference and brings the two formulae into almost 
exact agreement. 

Equations (2.14) and (2.15) were also integrated numerically and figure 2 
presentsf”(0) versus p for values & E  = 0.005, 0.05, 1, 10; the case B = co is the 
exact result based on the preceding analysis.The surprising result is the occurrence 
of the e = 1 and E = 10 curves to the left of the ‘limit’ curve E = co, in apparent 
contradiction with the results based on the linearized analysis (see figure 1). It is 
expected that the modified Oseen analysis would again resolve these differences 
but the results of such an analysis are, as yet, lacking. Figures 3 and 4 are plots of 
the stream lines yF, = a, 1 and the magnetic potential lines A ,  = 4, 1 as determined 
by the linear and non-linear theories, respectively, for E = 1, /3 = 4. 

To provide additional and more conclusive proof that p = 1 is indeed critical 
even when E is finite, we have recourse to the following analysis which clearly 
indicates the nature of the fields when 1 -pis small. We shall find that an explicit 
description of both 9 and A can be obtained when E = 1, but that numerical 
integrations would be needed to detail the results for E $; 1.  

If we introduce the new variables, x = ( 1  -/3)*7, # ( x )  = ( f - P * g )  ( 1  -p)-*, 
Q(z)  = ( f+P*g)  (1 -p)*, equations (2.14) and (2.15) become 

+ *( 1 + 6 )  Q’’ + i ( 1 -  E )  Q#“ = 0, 

( 1 - p) #I// + *( 1 + E) a#’’ + $F( 1 - E )  #a” = 0, 

(4.4) 

(4.5) 
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and, in particular, for e = 1 
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sz’”++Q” = 0, 
(1-/3)q5’”+52$5” = 0, 

with Q(o) = 0, LI N ~ ( z - B ) ,  $(o) = 0, q5 N z-B and Q’(o) = -(1-/3)#‘(0), 
where B is a constant. Let /3 be close to unity. The form of equations (4.6) and 
(4.7) suggests that, away from z = 0, $5 and IR are governed by equation (4.6) and 

LI+lI N 0, ( 4 4  

but that, in some neighbourhood of z = 0, the seemingly small term of equation 
(4.7), i.e. (1 -/3) $’”, is important and a ‘boundary layer’ phenomenon or ‘edge 
effect’ is present (Carrier 1953). We proceed then as follows. 

1.2 - 

f“ (0) - 

1.0 - 

08 - 

0 6  - 
- 

0.4 - 

- 

0.2 - 

FIGURE 2. ‘Skin 
B 

friction’f”(0) (equation (2.14)) versus /? for several values of 8. 

Let Q’(o) = A, where h is some function of /3 which we can expect to be small, 
compared to unity, in view of the last boundary condition; we also expect it to be 
large compared to 1 -p. The parameter h is to be determined in this analysis. 
Define g = [A/( 1 -/?)I* z and assume that, for z < 1, 52 = A( 1 -p)* [P(() + &I, 
where &(c, /3) is small to some as yet undetermined order in (1 -B) and where P is 
independent of /3. This is equivalent to the assumption that LI”(o), Q”’(o), ..., are 
so small that 52’(o) is not dominated by Qrr(o) 9, etc., for any 6 of order unity. If 
Q”(o) z2 were the dominant term, a similar procedure could be (and was) followed. 
However, it turns out that 52“(0) is not a dominant contribution and no clarity 
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would be gained by detailing the analysis corresponding to that unsuccessful 
conjecture. 

For 5 1, equation (4.8) is expected to hold and therefore 

4.0 1 I I I /‘ I 

3.5 - I 

I 
I 

/ 
/ 

I 
- 

€=1 $ 
3.0- 8 = 0 3 2 6  

/ 
I 

I 

- 

2.5- - 
Y 

2.0- - 

- 

- 

- 
0.5 I I I I I 

-20 -15 -10 -5 0 5 

We can write 

10 

I I I I I ,  
I 

(4.9) 
(4.10) 

x 
FIGURE 3. The stream lines +o = 4, 1 ; and constant potential lines A, = 4, 1 ; 

for 6 = 1, ~9 = 0.326 &s determined from the linear theory. 

where @(o) = 1 and where 
R 2: F(5) when z < 1, equation (4.7) becomes (for z < 1) 

must decay to zero very rapidly as C: -+ a. Since 

(4.11) @.”(6) +P(5) @“(C:) = 0, 

and equation (4.6) can be written 

Q ” ’ ( z ) + [ z - B + B @ ( ~ ) ]  Q”(z) = 0, (4.12) 
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so equation (4.12) can be integrated to give 

Q(z) = 4[I( 1 + a*)]-l 
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where 5‘ = C(x ’ ) ,  Q = h/(4-h) and 

I = lom exp ( - +z’2 + ~ z ’  + [ ~ 2 ( 1  - P)/AI* 

= s,” exp { - id2 + Bz’ + [B2( 1 - P)/h]* ~(6‘)) dx‘. (4.13) 

If the coefficient of x in (4.13) is of order unity or smaller, then Iii<closely given by 

I N J(4n) (1 + erfB/ J2):e@*, 

and if B 9 1 (as it will be when p- 1 < l), 

I N J( 277) e@’. 

s/”(o) 21 4 exp {[B2( 1 - P)/h]+ - iB2) 
It follows that 

and that, for z < 1, 
(4.14) 

fi N [h(l -,@I* C+ 4 exp {[B2(1 -p)/h]* - iB2) (1 -p)  C2/h + . . ., 
and that, as z --f 03 

a - 4  2-23 1 +  1 ) (l+Q*)-l})+ .... ( (( J(2n) Betss 
Furthermore 

(4.15) 

- [B e*Ba J(2n)l-1. (4.16) 
fi*=-- h 

4 - h  

Furthermore, in order that s/’(o) = - (1 -p) #’(o), 

h = - (1 -p )  B[A/(1 -p )p  Q’(0). (4.17) 

Equations (4.16) and (4.17) imply that 

(1 -p) B3 e*B2 = 4/{J(2n) D2]-l, (4.18) 

where D = - W(o). This defines B(P) (except for D, a constant of order unity yet 
to be determined) and we see that B +. CQ very slowly as 1 -p  -+ 0. The ‘stretch 
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factor' in the co-ordinate change is just DB, i.e. 6 = DBx and h = BzDz(l -p). 
Equation (4.14) gives for a"(o),  

~ ( 0 )  = ,/( 2n) el/D ~ 3 ~ 2 (  1 - p) 
and 

Equations (4.15) and (4.19) are now equivalent to a non-linear integral 
equation for a([) and that equation has a solution for each real positive D. Note 
that when D id  co, equation (4.15) implies that W(o) = -,/(77/2). On the other 
hand, as D += 0; W ( o )  + - co. Since W(o) is a continuous function of D, the fore- 
going estimates imply that there is a value of D for which W(o) = - D. This, of 
course, is the required value for D and the description of the fields is complete 
when <D has been calculated for this eigenvalue D. Since D is of order unity and, in 
particular, is independent of p, one can readily verify that each contribution 
which was omitted in the foregoing analysis was smaller by a factor 1/B than 
any retained contribution against which it would have been compared had it also 
been retained. The solution given above, then, is the dominant part of the asymp- 
totic (in 1 -p)  solution of the problem. Our purpose is now completely served 
without an integration to find @ accurately because one readily sees that both 
f and g as given by the definition preceding (4.4) tend to zero at every meaningful 
(non-negative) value of 7 and the flow is 'plugged' as was suggested by the linear 
theory. 

When E is neither zero nor infinite no such elementary treatment can be used. 
None the less, the problem still displays L boundary layer character similar to that 
of the e = 1 case, and there is little doubt that this problem (equations (4.4) and 
(4.5)) has a solution which again implies anf(7) and g(7) which tend to zero at  all 
7 asp+ 1.  

5. Finite flat plate 
The magnetohydrodynamic flow past a finite plate of length I* exists not only 

for p < 1 but also for p > 1. We consider first p < 1, since for this case the analysis 
of $ 3  through equation (3.13) is still valid. If R = l*v*/vz is the dimensionless 
plate length, thenf(x) = 0 for x > R (see (3.3)). The Wiener-Hopf method can 
no longer be used; to determine f ( x )  an integral equation can be formulated and 
solved. The Fourier inversion of (3.13) and use of the convolution theorem yield 
the result 

where 

and 

For 0 < x < R, $Jx, 0 )  = - 1 and the resultant integral equation forf (2) is 
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The integral in equation (5.2) can be evaluated easily by some simple, but 
carefully executed, contour integrations and it is found that 

(5.4) 

where KO@) and Kl(z) are modified Bessel functions of the second kind. Another 
method of deriving this result is presented in the Appendix. 

For the first example, let the conductivity of the fluid be infinite, so that 

h+l--s lim - I(x --t, w2) = 0 
E+W 4h 

and 
l + € - h  lim 

e m  4h 
I ( z - t ,  n2) = +I(x-t ,  1 -p). 

Equation (3.8) reduces to 

1 = ~o~4(f(t))l(x-t,I-p)dt. (5.5) 

Henceforth, let the Reynolds number R be very small, R < 1. The kernel of the 
integral equation (5.5) can then be approximated by the first few terms of its 
series expansion 

The simplest approximation, for sufficiently small R, is 

equation (5.5) is then approximated by 

- 1  = s, Rf(t) 4n In ( y J x - t l ) d t .  

The solution of this integral equation was obtained by Carlemann (1922) and is 

Note that as /3 + 1,f ( x )  -+ 0 (the skin friction approaches zero). This immediately 
implies that @ and A both become zero at this critical value. We again find that 
the entire flow can be brought to rest by increasing the strength of the applied 
magnetic field. 
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The next approximation would be to use the first two terms of (5.6) 

For this kernel, it is found that 

(5.10) 

(5.11) 

where y is the Euler constant. For still higher approximations any finite number 
of terms of the series expansion in (5.6) can be used. A method for obtaining the 
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FIGURE 5. 'Skin friction'f(z) versu8 distance for plate length R = 0.5 and /? = 0,0.6,0-99; 
I, solution obtained from equation (5.9); 11, equation (5.11); 111, equation (6.15). 

exact solutions to the corresponding integral equations has been given by Pearson 
(1957). If three terms ofequation (5.6) are used, a sufficiently good approximation 
(to O(R2)) of the exact solution is 

-4(2(R--))-*[ l+~(x-~R) (1-P)(In(Ae(l-P)R}+ 1--4(3$(1)--$(2)))1 
In {AP - P)  R} - (1 - 7) f ( 4  = 

(5.12) 

The solutions, equations (5.9), (5.10) and (5.12), are plotted in Fig. 5 for P = 0, 
0.5, 0-99. The relatively large plate length, R = 0.5, was chosen to compare the 
accuracy of the successive approximations. The drag on the plate is given by 

- 2nv,pv/ln (A( I - p) R} 
if we use the solution given by (5.9) or 

- 27rv,pv/[ln {A( 1 - P)  R} - 1 + y ]  

if we use either (5.11) or (5.12). The latter formula is in agreement with the results 
given in Tomotika & Aoi (1953). 
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The horizontal velocity component on the x-axis can be computed without 
difficulty by means of equation (5.1). If we use the simplest approximation to 
f(x) given in (5.9), 

(5.13) 

To determine $Jx, 0) near the plate, we can again approximate the kernel by 
equation (5.7). The resultant integrals are all tabulated and we find that upstream, 
near the plate, (x - t (  -g 1, x > 0, 

and that downstream, near the plate, 

(5.14) 

(5.15) 

At large distances from the plate, we can replace the kernel by its asymptotic 
values to obtain asymptotic formulae for the function 1CrY(x, 0). Upstream, far 

while far downstream 

(5.16) 

(5.17) 

It is evident that for P < 1, the effects of the plate on the fluid are most prominent 
in the downstream wake. 

For a fluid of arbitrary finite conductivity, (5.3) must be solved. This can be 
done by exactly the same methods just used. For the moment, let wx < 1 and 
a x  < 1. (This implies that E = O( l).) If we approximate the kernel of (5.3) by the 
first term of its series expansion the resultant integral equation is 

The solution of this equation is 

f(x) = -4[~(R-x)]-*A-l, 

where A = l n & B + (  A + E - l  A ) I n n + (  A ) 1nw. (5.19) 

This formula is also valid for very large E ,  for although I(wx) cannot be accurately 
approximated by the first term of its series expansion, the coefficient of this term, 
( A  + 1 - .)/2A, is very small. In  fact, 

l i m A + l - E  I(w22) = 0. 
€-+a 2A 
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The solution for E = co represents the first term of the asymptotic expansion of 
f (x) for very large E .  Since the limits of w2, Q2, ( A  + E - 1)/2A and ( A  + 1 - e)/2A, as 
p -+ 1, are 1 + E ,  0, E / (  1 + E) and I/( 1 + e) ,  respectively, /? = 1 is a critical value, the 
value a t  which plugging occurs, and 

lim f (x) = 0. 
8-tl 

Downstream, near the plate, we find that 

(5.20) 
whereas far from the plate 

(5.21) 

Upstream, near the plate 

All.,(x, 0) = - In *( (R - &) + x(x - R)+) - A+€-  -- 1 lnQ- '+l-'lnw A (5.22) A 
and far from the plate 

(5.23) 

The results expressed in (5.14) through (5.17) are obtainable from these by 
setting E = 00. 

The casep > 1 requires only a slight modification of technique. Equation (3.11) 
is still valid when the proper interpretation is placed upon the root quantities. The 
term (p2  + +ip( 1 -t- E + A)) ,  is still interpreted as 

however, since &( 1 + E - A )  is now negative, and Q$ = &(A - 1'- E), we must now 
interpret (p2 - ipO$)* as 

lim ( p  + ik) ( p  - i~2,)+. 
k+O 

When p divides a quantity containing the first root it is replaced by p - i k ;  when 
p divides a quantity containing the second root it is replaced by p + i k .  The 
analysis is then similar to that for /3 < 1 and will not be repeated in detail. It 
follows that 

where I ( x ,  a )  is given in equation (5.4). In  the interests of simplicity we restrict 
ourselves to a discussion of the case of infinite conductivity. Equation (5.24) 
reduces to 

(5.25) 

For sufficientlysmallx, I(t - x , P -  1) = I (x- t ,  /3 - 1) as shown by(5.7) and (5.10). 
Tothisorder,f(x)maybeobtainedfrom (5.9)or (5.11) byreplacing 1 -/3byp- 1 

$&, 0) = - JOB l ( t  - x, p - 1) dt. 
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or ll-/?I. The horizontal velocity component @&,o) can be determined for 
small z (near the plate), by making the same replacement in (5.14) and (5.15).  
The asymptotic behaviour of $Jx, 0) for /? > 1 ,  e = 03 is just the reverse of its 
behaviour for /? < 1, e = 03. Downstream, (p- 1 )  x 9 R, 

n 

whereas, upstream x < 0, (/? - 1 )  x % R, 

? T *  1 
2((P_ 1 )  1x1) In{&(/?- 1)  R} $v(x’ 

(5.26) 

(5.27) 

For ,8 > 1 , e  = 00, the effects of the plate on the fluid are most prominent upstream 
and not in the wake as is the case for /? < 1. The corresponding statement for 
finite conductivity, /? > 1, is that the effects of the plate on the fluid are as 
prominent upstream as they are downstream. The asymptotic behaviour of 
$y(x,o) in this case is inversely proportional to  4. in either direction. The 
significance of these results lies in the fact that for /? > 1 the plate is moving at 
a velocity which is subsonic compared to the Alfvh wave speed c = (p*/p*)g H:. 
The disturbance can propagate upstream by means of these waves, whereas, for 
p < 1 ,  the plate is moving at a supersonic speed compared to this wave velocity, 
making it impossible for a disturbance to propagate upstream. 

6. Conclusion 
The magnetohydrodynamic flow past a flat plate exhibits a rather surprising 

effect. For any non-zero conductivity there is a single critical applied magnetic 
field, H,* = (p*/p*)*v,* for which the velocity and magnetic field at any field point, 
x, y, are zero. In  particular, no steady ‘subsonic’ flow past an infinite plate (the 
flow being uniform at infinity) can exist; by ‘subsonic’ we mean a flow in which 
U, is less than the Alfv6n speed. This is somewhat analogous to the situation 
which arises when one studies the inviscid compressible flow past a wedge, but 
that  analogy is loose because our displacement thickness is parabolic, not wedge- 
like, and steady subsonic hydrodynamic flow past a parabola can exist. 

On the other hand, there is a steady’flow past a finite plate (or a more general 
cylinder) both at /? < 1 and at /? > 1. When /? > 1, however, the upstream 
influence is much stronger than it is when /? < 1; zh fact, the structure of the 
upstream velocity profile for /3 > 1 is made like that of the laminar wake when no 
magnetic field is present. 

Appendix 
We now derive an integral expression for the stream function $(x, 3). We will 

consider e = 00 only; the extension of the methods to the case of finite con- 
ductivity is straightforward. For e = 00 and /? < 1, equation (3.11) becomes 
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f(P) (p2 + k2)* 

95 

so that 

exp [ - Y(P2 + k2)*1 4u(pyy)=2i(l-p) p - i k  

- p-*(p + i( 1 - PI)* exp c - y W  + ip( 1 - P)) , 
[ 

*]I 
where we have again introduced the factor k. This last equation can be reduced to 
a more convenient form, 

and G(X,Y) = exp {ipx - y ( p 2  + k2)*> d p .  

From Foster & Campbell (1948, formula no. 868) 

1 
2 4 1  - P)  ~ ( x ,  y )  = 1 -p- - e*(l-flx.Ko(+(l -8) (x2+y2)*)  ( a 

and, as k+ 0, 
X 1 

3) - H ( x ,  y )  = 2T( 1 - p) (;2 + y2) - -e*( l -B)zKo($(l-p)  4a (x24y2) i )  

K , (W - P)  (x2 + Y"% 
X - 

27r(x2 + y2)4 

This reduces to (5.4) upon setting y = 0. The strqam function is obtained by 
integrating with respect to y, 

+ ( x , y )  = ~ o u d z ~ o R ~ ( t ) { a ( x - t , z ) - U ( z - t , z ) ~ d t .  
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The functionf(x) is given in equations (5.9), (5.11) or (5.15). For p > 1 it  is 
necessary to alter the analysis as indicated at the end of § 5. The modified kernel 
can then be obtained from this expression for G(x,  y) - H ( x ,  y) by replacing 1 -/3 
by p- 1 and x by -x. The function f(x) is determined by making the same 
replacement in (5.9) and (5.11). 

Some of the work reported here was sponsored by the Office of Naval Research 
under contract Nonr 1866(20). 
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